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REVIEW ARTICLE

Hospital Tap Water

A Reservoir of Risk for Health Care—Associated Infection

Joseph Steven Cervia, MD, FACP, FAAP, FIDSA,*t Girolamo A. Ortolano, PhD,*
and Francis P.Canonica, PhD*

Abstract: Accepted as our most reliable weapon in the battle to
reduce health care—associated infections, hospital tap water has also
been recognized as “the most overlooked, important, and control-
lable source of HAL” Peer-reviewed literature has demonstrated that
hospital tap water contains microbial pathogens and that biofilms in
water systems resist disinfection and deliver pathogenic organisms
to the health care environment. At-risk patients are susceptible to
infection through direct contact, ingestion, and inhalation of water-
borne pathogens. Systemic water treatment technologies reduce
levels of recognized waterborne pathogens; however, they vary in
initial and long-term maintenance costs, efficacy against specific
organisms, and compatibility with facility plumbing system materi-
als, and they cannot eradicate biofilms within health care facility
plumbing. Existing point-of-use filtration technologies have been
reported to interrupt clinical outbreaks of infection due to recog-
nized waterborne pathogens in the health care environment and may
offer a cost-effective complementary infection control strategy,
particularly when targeted for patients at high risk.

(Infect Dis Clin Pract 2008;16:349-353)

ccording to the US Centers for Disease Control and

Prevention, health care—associated infections (HAIs)
account for an estimated 1.7 million infections and 99,000
deaths annually in American hospitals." Accepted as perhaps
our most reliable weapon in the battle to reduce HAIs,
hospital tap water has also been recognized paradoxically as
a source of such infections. One investigation has estimated
that 1400 deaths occur each year as a result of waterborne
nosocomial pneumonias attributable to Pseudomonas aeru-
ginosa alone.” However, despite concerns regarding the
increasing incidence of serious HAIs due to multidrug
resistant gram-negative pathogens, the risk of waterborne
transmission of these microbes has received relatively little
attention.

Regarding the risk of waterborne pathogens such as
Legionella, Dr Bruce Dixon, director of the Allegheny
County Health Department, has summed up the problem
succinctly, “If you don’t look for it, you won’t find it. If you
don’t find it, you don’t think you have a problem. If you
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don’t think you have a problem, you don’t do anything
about it.”* Indeed, an understanding of the ecology of wa-
terborne pathogens in the health care environment is nec-
essary to gain further insight into why this risk may go
largely unrecognized. Waterborne microbes thrive to varying
degrees in hot and cold water. Whereas cold water is de-
livered directly to the point of use, hot water is supplied via
a recirculation loop, which contains nutrients to nourish wa-
terborne microbes, maintains favorable temperatures for mi-
crobial growth, and promotes the formation of biofilm on
internal surfaces of pipes and fixtures. Moreover, waterborne
microbes, adapted to life in a relatively nutrient-poor envi-
ronment, may be difficult to culture using nutrient-rich media
for short incubation periods (eg, 24—48 hours at 37°C). Suc-
cessful culturing may require special media (eg, R2A) and
extended incubation periods at lower temperatures (eg, 25°C
for 14-28 days).

BIOFILM

Ubiquitous in hospital plumbing as in nature, biofilm
is a microbially derived sessile community characterized by
cells that are irreversibly attached to a substratum or
interface or to one another, are embedded in a matrix of
extracellular polymeric substances that they have produced,
and exhibit an altered phenotype with respect to growth rate
and gene transcription.” Biofilm affords microbial pathogen
protection from adverse environmental conditions outside the
host,” and it has been established that biofilm bacteria display
a higher level of resistance to antimicrobial agents® ' and
environmental controls (eg, UV light, metals, and acid
pH)''""2 than do planktonic (free-floating) bacteria. Proposed
mechanisms contributing to antimicrobial resistance of bio-
film bacteria are many, including extracellular polymeric
substance—antimicrobial interaction, altered bacterial cell
surface properties, slower growth rates, enzyme production,
plasmids, the contribution of phenotypically resistant mi-
crobes within the biofilm, and the surface topography of the
material to which biofilm is adherent.’ In addition, for clin-
ically important organisms such as P. aeruginosa, a single
genetic locus is associated with both the ability to form bio-
film and antimicrobial resistance.'*

DETERMINANTS OF INFECTIVITY
Pathogen virulence and density clearly impact the
likelihood of infection upon waterborne exposure. Some
waterborne pathogens of recognized virulence include P.
aeruginosa, Stenotrophomonas maltophilia, Acinetobacter
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species, and Legionella species. In addition, organisms such
as atypical mycobacteria, Aspergillus, Fusarium, and Cryp-
tosporidium are among other potential waterborne pathogens
of substance. Some (eg, Pseudomonas species, Legionella
species, and atypical mycobacteria) are also resistant to di-
gestion by free-living waterborne amoebae that, upon phago-
cytosing, these bacteria may act as “Trojan horses” protecting
the pathogens from disinfection by chlorination, acid pH, os-
motic pressure, and temperature and transporting them to the
point of use in the health care environment.

Nevertheless, in the normal host, bacterial exposures
from showers, faucets, and other aqueous sources (eg, by
inhalation or ingestion) are typically cleared by innate defenses
(eg, mucociliary escalator clearance of inhaled organisms).'®
Thus, immunocompromised hosts—recipients of bone marrow
and solid organ transplants, individuals with congenital or
acquired immunodeficiency syndromes, oncology and burn
patients, critically ill patients in intensive care units, smokers,
individuals with chronic cardiac and respiratory disorders,
and residents of skilled nursing facilities—are likely to be at
higher risk. It is precisely for such patients that appropriate
environmental infection control methods are most important.

CONTROL MEASURES

Systemic Water Treatment

Methods used to disinfect water lines must address
amoeba and biofilm to be effective. We have reviewed this
subject'” and provide a brief summary of that information, as
well as focus on updates from the recent literature. Seven
preventive water treatment strategies, excluding point-of-use
(POU) water filters, have been used, usually in response to an
outbreak. They include hot water flushing of the plumbing
system, chlorination, chlorine dioxide, monochloramine
(used exclusively at the municipal treatment level in the
United States), copper-silver ionization, UV light, and
ozonation. Each method has advantages and disadvantages
related to ease of implementation, cost, maintenance issues,
and short- and long-term effectiveness. All strategies, in
contrast to POU filtration, are not completely effective in the
long run because maintenance of systemic disinfection agents
at levels that would prevent recolonization and biofilm elab-
oration is difficult and because biofilm is known to protect
microbes against systemic disinfection strategies.

Hot water flushing is the easiest to implement but
requires that all parts of the plumbing system be exposed to
high-temperature water for a period during which use of
water outlets is precluded. The potential for inadvertent
scalding at the point of use is also an issue because water
temperatures often exceed 65°C. Recent data corroborate
earlier observations that hot water flushing is inadequate in
eliminating Legionella from plumbing systems over the
longer term,'® even though temperatures above 59°C were
associated with an inability to culture Legionella."®** A
single treatment has been shown to reduce the number of
sample sites from which Legionella organisms are recovered
to 45% and then to 9% after a second treatment. In another
study, a system flush using hot water at 80°C was incapable
of eradicating Legionella serogroup 5, and only 1 serogroup
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6 strain was eradicated.”' That this is not an isolated event is
supported by the observation of a persistent strain of
Legionella in a hospital during the course of 15 years.*
Hyperchlorination was added to hot water flush, and
Legionella organisms were still recovered from the showers,
prompting the disconnection of central water supply lines and
the use of electrical hot water heaters for showers. This
resulted in a substantial reduction in recoverable Legionella
without clinical incident.”?

Chlorination is also simple to establish, but it can be
challenging to maintain adequate levels of chlorine through-
out the system, as may be inferred from its less than stellar
performance in maintaining a microbially free environment.
Electrolytic chlorine generation systems in large-scale studies
seem to be no better than sodium hypochlorite.”* However,
chlorination is not free of potential by-product—associated
genotoxicity, which is an emerging concern.”> Bench-scale
chlorination compared with UV irradiation showed that both
methods were effective in reducing the bioburden of indicator
organisms. However, pathogens of clinical concern were less
affected by chlorination.?® Data continue to accumulate,
suggesting that waterborne pathogens are protected against
chlorination by amoeba and biofilm.?’*® These findings sug-
gest that chlorination may be less effective than other al-
ternatives, despite its relative cost efficiencies.

Much of the earlier characterization of chlorine dioxide
is supported by more recent literature. The potentially
corrosive properties of chlorine dioxide are not evident in
the literature, and the maintenance of an effective concen-
tration in hot water systems remains poorly characterized.
Chlorine dioxide effectively reduces but may not eliminate
Legionella.*®*° Testing of multiple disinfection strategies has
indicated that chlorine dioxide may be the most effective
systemic disinfection regimen for the control of Legionella.*®
In simulated potable water system testing, chlorine dioxide
was shown to be more effective in reducing heterotrophic
bacterial counts, with reduced levels of some but not all
organic halogenated by-products.®® Relative to chlorine, it
remains more costly to install.

Efficacy studies of chloramines alone or in combina-
tion with free chlorine attest to the fact that neither alone nor
in combination is complete as a disinfectant.>' In addition,
the spectrum of potentially harmful halogenated by-products
left by combination chlorination regimens®* will take some
time to assess. Chlorine and chloramines also differ in their
spectrum of antimicrobial activity. For example, Klebsiella
pneumoniae seems to be more sensitive to chloramines than
to free chlorine under certain conditions.*?

Copper-silver ionization has been recently reviewed
when used either alone or in combination with other systemic
disinfection strategies.”* A review of 10 copper-silver ion-
ization studies uniformly supported its effectiveness to
varying degrees. However, this technology was also demon-
strated to be more effective when used in combination with
another disinfection technology. More importantly, none of
these studies were able to demonstrate sustained eradication
of Legionella. From a practical perspective, however, an in
vitro study of copper and silver ions alone and in combina-
tion provided evidence to suggest bactericidal efficiencies
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greater than 99.99% against the most significant clinical
waterborne microbes, P. aeruginosa, Acinetobacter bauman-
nii, and S. maltophilia, in addition to Legionella.?>"°

As indicated previously,'” UV light, which is rarely
used in the hospital setting in the United States, has poor
penetrating power, is only effective at the source of
irradiation, and remains prone to fouling of the quartz sleeves
surrounding the UV lamp.>” The one notable advance is the
use of light-emitting diodes to deliver UV-A radiation, which
has been shown to be effective as a bactericidal systemic
treatment. It must be noted, however, that this technology
awaits further characterization.*® Like other combinations of
systemic disinfection strategies, it should not be surprising
that UV and ozonation used in combination have been shown
to be better than either used alone.>® Although regulations
governing the oxidative by-products of halogenated disinfec-
tants exist, additional by-products continue to be identified.
One obvious consideration is that any systemic disinfection
strategy will always bear a level of uncertainty concerning
toxic by-products that accrue from its use. In contrast, POU
filtration lacks this drawback and offers the potential benefit
of immediate and complete effectiveness against waterborne
bacteria, fungi, and protozoa.

POU Water Filtration

Although the implementation of POU water filtration
for at-risk patient populations in the health care setting is a
relatively new phenomenon in the United States, this
technology has been used extensively in Europe for the past
10 years. European health care institutions have long rec-
ognized the potential threat posed by waterborne bacteria,
fungi, and protozoa to neonatal, elderly, and immunocom-
promised patient populations, as well as patients in intensive
care units.

Point-of-use filtration studies have appeared extensive-
ly in the scientific literature and have repeatedly addressed
the role of filtration technology in both reducing infections
due to waterborne pathogens and saving money for the health
care institution. These studies have focused primarily upon
Legionella and P. aeruginosa, although studies in progress
are beginning to investigate other common waterborne path-
ogens such as Acinetobacter species and S. maltophilia.

Sheffer et al*® conducted a study during which it was
demonstrated that POU filters labeled for a maximum use
life of 7 days completely eliminated Legionella pneumophila
and Mycobacterium gordonae from hot tap water during an
8-day period of use. Vonberg et al*' contributed to the ever-
growing body of evidence supporting the efficacy of POU
filters through the observation that 99.6% (n = 256) of wa-
ter samples obtained during their study were devoid of
Legionella species. In the single sample that was positive,
Legionella concentration was 1 colony-forming unit/mL.

After an observation period of 11 months, during
which a high incidence of P. aeruginosa bacteremia was
observed in a hematology unit with severely neutropenic
patients, Vianelli et al*? performed extensive sampling in an
attempt to trace the environmental source of the isolates that
were appearing in patient blood cultures. Upon identifying
faucets and showers in the unit as the primary environmental

© 2008 Lippincott Williams & Wilkins

sources of those isolates, POU filters were installed on all
hematology unit water outlets. Highly statistically significant
reductions in bloodstream infections were subsequently
observed over the next 2 years.

In a study spanning a period of 2 years, Trautmann
et al* documented a decrease in the monthly rate of P.
aeruginosa infections in a surgical intensive care unit (SICU)
from 2.5 per month before POU filter installation to 0.8 per
month after POU filter installation. Of particular interest in
this study was the fact that when implementation of POU
filters was initiated during month 13, only 3 of a total of 9
faucets were fitted with filters. When the infection rate began
to trend downward, POU filters were installed on the
remaining 6 faucets at the beginning of month 17. During
the final 8 months of the study (months 17-24), representing
the entire time when all 9 SICU faucets were equipped with
filters, not a single P. aeruginosa infection was observed for
6 of the 8 months.

Van der Mee-Marquet et al** surveyed pseudomonal
infections of blood, urological, and pulmonary origin en-
compassing 23,611 patient-days in the intensive care envi-
ronment during a period of 7.5 years (90 months). During a
time frame of 2.5 years (30 months) before the use of
POU filtration, 8.7 infections per 1000 patient-days were ob-
served, whereas in the 5 years (60 months) after installation of
POU filters, only 3.2 infections per 1000 patient-days were
recorded.

In the neonatal intensive care unit, LaFerriere* used a
variety of infection control interventions, including POU
filtration, to effect a dramatic decline in HAIs attributable to
P. aeruginosa.

The establishment of a genetic link between pathogenic
bacterial strains isolated from tap water and strains isolated
from patients has been extensively detailed.>**>> These
studies substantiate that the transfer of waterborne bacteria
from unfiltered tap water sources in the health care environ-
ment to at-risk patients via inhalation of water vapor, in-
gestion (eg, drinking and ingestion of ice), and direct contact
(eg, showering, bathing, wet hands of a health care provider,
and contact with medical devices rinsed with tap water) is
indeed a source of concern.

A potential limitation to the effectiveness of POU
filtration and indeed to all efforts at water decontamination is
the fact that waterborne pathogens, such as P. aeruginosa,
may enter the health care environment endogenously via
patient colonization. They may also enter via other contami-
nated fluids and instruments, such as endoscopes, broncho-
scopes, artificial saliva, and even mouth swabs.’® Thus,
within the broader context of infection control monitoring,
adequate staff and patient training with respect to the
appropriate use, maintenance, and replacement of POU filters
is important to reduce the risk of possible retrograde
contamination of incoming tap water.>” Another potential
limiting factor is the additional cost of POU filters and other
associated methods of risk reduction.

The added cost incurred for HAIs in US hospitals has
been estimated at $15,275 to $38,656 per infection.’®>’
Although scientific studies have supported the use of POU
water filters to reduce at-risk patient exposure to waterborne
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pathogens, economic benefits can also be realized by health
care institutions that adopt this technology. Hall et al*® dem-
onstrated that costs associated with filtered drinking water
supplied to immunocompromised patients were drastically
lower than those for both bottled sterile water and com-
mercially available bottled water. Trautmann et al’' recount-
ed savings realized on the cost of antibiotics used to treat
P. aeruginosa infections in a SICU during implementation of
POU water filters on faucets. Finally, imminent changes to be
implemented by the US Centers for Medicare and Medicaid
Services to its reimbursement policy, namely, nonreimburse-
ment of health care facilities for specific HAI, may encourage
efforts to engineer a safer patient care environment by means
such as implementation of POU filtration technology, not
only to protect patients but also to avoid bearing the full cost
of HAI treatment.

CURRENT APPROACHES

The control of waterborne pathogens in US health care
institutions is at best a fragmented work in progress. As has
been previously stated, the United States lags far behind
Europe in recognition of tap water as an important source of
HAIs. Furthermore, the approaches taken by many US health
care institutions to control waterborne pathogens vary greatly
and generally fall into 1 of 4 categories: nonexistent, spo-
radic, incomplete, and enlightened. The nonexistent approach
is self-explanatory. These institutions either lack awareness
or actively choose not to address the problem at all. The
sporadic approach is characterized by responding to an out-
break by culturing water and temporarily installing some
preventive measures such as POU filters. When the outbreak
ends, POU filters are removed, leaving the facility unpro-
tected as the clock ticks toward the inevitable next outbreak.
The incomplete approach involves an undisciplined and hap-
hazard approach to water culturing, installation of a systemic
disinfection technology, and failure to implement POU
filtration. This approach leaves the facility continually vul-
nerable to biofilm in the plumbing system, changes in water
pressure, and seasonal variations in water quality. It also ig-
nores studies conducted indicating that electronic (nontouch)
faucets can harbor and encourage the proliferation of water-
borne pathogens due to the fact that their electrical solenoid
valves remain warm at all times, thereby providing an incu-
bated environment for planktonic and biofilm-based bacteria,
fungi, and protozoa.®' ® Finally, the enlightened, thought-
leading facilities have recognized the need to perform rou-
tine microbial analyses of tap water in at-risk patient areas, to
install an appropriate systemic disinfection technology, and
to continually use POU filters to protect their most vulnerable
patients.

SUMMARY

It has been suggested that hospital water distribution
systems are among “the most overlooked, important, and
controllable sources of HAL ™ Available evidence in the
peer-reviewed literature has demonstrated that hospital tap
water contains microbial pathogens and that biofilms in water
delivery systems resist disinfection and deliver pathogenic

352

organisms to the health care environment. At-risk patients are
susceptible to infection through direct contact, ingestion, and
inhalation of waterborne pathogens, as numerous clinical
reports attest. Systemic water treatment technologies reduce
levels of recognized waterborne pathogens; however, they vary
in initial and long-term maintenance costs, efficacy against
specific organisms, and compatibility with facility plumbing
system materials. Moreover, they do not permanently and
completely eradicate biofilms within health care facility
plumbing. Finally, existing POU filtration technologies have
been reported to interrupt clinical outbreaks of infection due
to recognized waterborne pathogens in the health care envi-
ronment and may offer a cost-effective complementary in-
fection control strategy, particularly when targeted for patients
at high risk.
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