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Abstract 

The rapid development of sequencing methods over the past decades has accelerated both the potential scope and 
depth of microbiota and microbiome studies. Recent developments in the field have been marked by an expan-
sion away from purely categorical studies towards a greater investigation of community functionality. As in-depth 
genomic and environmental coverage is often distributed unequally across major taxa and ecosystems, it can be 
difficult to identify or substantiate relationships within microbial communities. Generic databases containing datasets 
from diverse ecosystems have opened a new era of data accessibility despite costs in terms of data quality and het-
erogeneity. This challenge is readily embodied in the integration of meta-omics data alongside habitat-specific stand-
ards which help contextualise datasets both in terms of sample processing and background within the ecosystem. 
A special case of large genomic repositories, ecosystem-specific databases (ES-DB’s), have emerged to consolidate 
and better standardise sample processing and analysis protocols around individual ecosystems under study, allowing 
independent studies to produce comparable datasets. Here, we provide a comprehensive review of this emerging 
tool for microbial community analysis in relation to current trends in the field. We focus on the factors leading to the 
formation of ES-DB’s, their comparison to traditional microbial databases, the potential for ES-DB integration with 
meta-omics platforms, as well as inherent limitations in the applicability of ES-DB’s.
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Introduction
Interest in categorizing microbial communities across 
accessible habitats has exposed the vast complexity of 
microbial life [1–3]. What started with the laboratory 
isolation of microbial species from habitats of inter-
est has expanded both in scope and depth following the 
advent of meta-omics (metabarcoding, metagenomics, 
metatranscriptomics, metaproteomics, metabolomics). 
Metabarcoding, for example, is now commonplace, 

allowing for an unprecedented systematic cataloguing 
of microorganisms using identifying biomarkers [4–6]. 
Technological developments over the past couple of dec-
ades have greatly expanded microbial community ecol-
ogy analyses to include, albeit still at great cost and effort, 
the sequencing of all genomes within a sample (metagen-
omics). These deep dives into the microbial community 
allow a higher level of taxonomic precision as well as fur-
ther opportunities to assess the functional capacity of the 
system [7–10]. Coupled to this has been an expansion of 
gene expression studies across community constituents 
within a sample (metatranscriptomics). The widening 
scope of meta-omics has led to the integration of diverse 
analytical tools into community ecology studies, such as 
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metaproteomics and metabolomics, providing informa-
tion on the underlying functional activity and metabolic 
state of the community, respectively [11, 12]. Measure-
ments of physicochemical parameters (i.e., pH, EC, Eh, 
temperature, nutrients) provide an environmental con-
text for taxonomic and functional fluctuations within the 
microbial community. Integrating measures of microbial 
functionality with taxonomic identification and these 
contextual parameters is essential for a better under-
standing of inter-microbial relationships and their roles 
in a particular environment. Nonetheless, databases have 
largely catalogued their constituent datasets around data 
type (e.g., sequence data, physiological data) and not the 
environments from which organisms are being sampled. 
This practice results in less standardisation across stud-
ies utilizing different investigative strategies (i.e., different 
meta-omics approaches) on the same habitat, ultimately 
hindering the integration of multiple data types in micro-
bial community ecology assessments.

Several studies have highlighted concerns over the 
validity of sequencing data accruing from the ever-
expanding body of microbial surveys and microbiome 
studies [13–16]. One group of reviews has addressed this 
issue by proposing standards for studies to follow. These 
reviews target standardisation in the collection and pro-
cessing of data for microbiome studies with respect to 
general guidelines [14, 17–19] and to specific environ-
mental situations [20–25]. Another group of reviews has 
focused on the efforts to integrate other data types (e.g., 
mass-spectroscopy spectra, environmental physicochem-
ical data) into sequencing studies [26–31]. These efforts 
notwithstanding, the evolution of microbial database 
collections from a data type orientation to an environ-
ment-specific one has received less attention. A recent 
commentary in Nature Microbiology addressed the topic 
of data type integration from the perspective of “micro-
biome centres”—institutions or consortia designed to 
accelerate microbiome research by facilitating collabo-
rations between personnel and infrastructure resources 
[32]. While the inception of the Microbiome Centers 
Consortium (MCC; http://​micro​biome​cente​rs.​org/) in 
2019 marks a milestone for more coordinated standardi-
sation across microbiome studies, database resources 
are still developed largely independent of one another 
despite greater connectivity between laboratories around 
the world. Widespread use of diverse meta-omics tech-
niques over the recent decades drives current efforts 
to streamline and integrate data types. Better database 
management achieves multiple aims: expanded access 
at an assured quality level, a repository for data, as well 
as more consistent and aligned standardisation for gen-
erating data. In this article, we review the development 
of ecosystem-specific databases (ES-DB’s) to address the 

unique challenges that arise when working with heter-
ogenous data types inherent to microbial community 
ecology.

Meta‑omics tools to unravel microbial community 
diversity and function
To study microbial community ecology, approaches used 
may be either DNA-based to study taxonomic diversity 
(metabarcoding) and gene diversity (metagenomics), or 
RNA-based to study gene-expression in the active micro-
bial community (metatranscriptomics), or protein- and 
metabolite-based to study the production and secre-
tion of various molecules (metaproteomics, metabo-
lomics) (Fig. 1). Viruses, while not the primary focus of 
this review, are studied using both metagenomic and 
metatranscriptomics techniques, depending on the virus 
type targeted. Meta-omics tools are often used inde-
pendently or a couple of them together in an effort to 
unravel complex interspecies relationships and functions 
in microbial communities. However, the lack of homo-
geneity among isolated studies limits their usefulness for 
making correlations and deriving meaningful hypotheses 
from similar studies.

Taxonomic identification and diversity of the microbial 
community
Metabarcoding studies have largely succeeded in sur-
veying microbial diversity in all major Earth habitats 
[33–37]. Several synonymous terms in widespread cir-
culation include metataxonomics, community profiling, 
and amplicon sequencing. While metataxonomics and 
community profiling emphasise the putative categorical 
endpoint, amplicon sequencing highlights the methodo-
logical contrast to metagenomics. Metabarcoding may 
be done alone (sequences compared to reference data-
bases) or against a metagenomic sample (sequences com-
pared to dataset of the community genomes in a sample) 
[38–40]. The ability of high-throughput sequencing plat-
forms to rapidly and accurately sequence gene regions 
has made metabarcoding data the most common data 
type in microbial sequence database collections [41–43]. 
Practical considerations such as a lower associated cost, 
lower DNA quantities and lighter bioinformatic analy-
ses required per analysis further lend to the attractive-
ness of the method [44, 45]. The selection of universal 
gene sequences for each taxonomic rank of interest has 
been essential for yielding more exhaustive descriptions 
of microbial taxonomic diversity [46–49]. The increas-
ing fidelity of third generation technologies such as the 
Pacific Bioscience and Nanopore long-read sequenc-
ing technologies and accompanying genome assembly 
infrastructure able to correct misreads represents an 

http://microbiomecenters.org/
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important milestone, allowing studies to rely on metabar-
coding for species-rank taxonomic assignment [50–52].

Far from being a complete story, major biases per-
sist around the metabarcoding approach as reviewed 
elsewhere [53–56]. Here we will emphasise the issue of 
unspecific amplification as a pernicious problem regard-
less of the focus on DNA- or RNA-based studies. For 
example, the use of the 16S rRNA gene to target bac-
teria also amplifies the 16S rRNA gene of plastids (e.g., 
chloroplasts, mitochondria) especially in host-associated 
microbial studies [57]. Similarly, investigations into host-
associated microbial eukaryote interactions—typically 
targeting the 18S rRNA gene—simultaneously amplify 
host 18 s rRNA sequences. The use of excluding or block-
ing primers may mitigate these issues [58], however the 
challenges they pose have not been fully resolved.

The requirement for amplification of a known 
sequence sets metabarcoding apart from other genetic 
investigation methods and is a significant limitation in 
exploratory research. For taxonomic studies, targeted 
genes must be variable enough to distinguish species 
or strains yet have sufficiently conserved sequences 
flanking the gene of interest in order to design prim-
ers. Common standards include the 16S rRNA gene 
for prokaryotes [59–62], the 18S rRNA gene (micro-
bial eukaryotes) [63], or the ITS region (fungi) [64, 65], 
albeit other sequences such as heat shock proteins have 

promising perspectives [66, 67]. Additionally, while 
metabarcoding typically involves sequencing the small 
subunit of the rRNA gene, it may also be applied to 
other genes of interest [68, 69]. By identifying the pres-
ence of a gene, these procedures are able to provide a 
clue into the metabolism exhibited by the sampled 
organism.

For studies aiming only to describe community com-
position, metabarcoding remains a cost-effective tool 
compared to culture-independent techniques- espe-
cially for well-studied microbiomes [33, 61, 70]. The 
most significant shortcoming in metabarcoding is the 
limited flexibility of a single gene sequence to repre-
sent total diversity. In contrast to the sequencing of 
a specific amplicon, targeted metagenomics is a cul-
ture-independent technique which limits the scope to 
a subset of total sample diversity (e.g., prokaryotes or 
eukaryotes) but targeting all genes within the sample 
[71, 72]. Ultimately, while sequence data is effective 
at mapping taxonomic relationships within a sam-
ple, investigative work into the mechanisms driving 
observed shifts in physicochemical parameters require 
a broader set of tools. Meta-omics addresses this goal 
by exploring community ecology from different per-
spectives: what microorganisms may potentially create 
(metagenomics), what they are in the process of creat-
ing (metatranscriptomics), and what they have created 
(metaproteomics, metabolomics).

Fig. 1  Interrelationships between multiple depths of biome characterisation, all which can be unified through microbial database collections
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Function and metabolic potential of the microbial 
community
Discerning function within the context of microbial 
ecosystems is a major challenge for community ecol-
ogy studies. Metagenomic studies reveal functional 
potential—DNA sequences that have the potential to be 
expressed. Conversely, metatranscriptomics can be used 
to study the pool of expressed sequences. The subset of 
expressed sequences may then be studied within the con-
text of translated proteins (metaproteomics) or as the 
biproducts of cellular metabolism (metabolomics). The 
following section will describe the types of data produced 
in these studies as well as the unique challenges they pose 
in terms of database integration.

Metagenomics
The metagenomic approach indiscriminately sequences 
all DNA fragments from a sample. The goal of this 
approach is to preserve the vast majority of genomes, 
with the important caveat that sampling the true total 
diversity is not physically realistic [73, 74]. Metagen-
omics is not subject to the same limitations in terms of 
primer selection and specificity as metabarcoding [45, 
75], although data quality may be diminished through 
pre-processing steps as with other methods [53, 54, 
76]. Given the significantly larger datasets than found 
in metabarcoding studies, metagenomics data is more 
laborious to process with requirements for sequence 
preparation and assembly that must be weighed against 
the potential for greater resolution in discerning meta-
bolic pathways [77]. In assembly, short sequencing reads 
are sorted to link extracted genomes with the original 
mixed microbial community constituents. The result-
ing pool of genomes can be screened for the presence 
of genes associated with metabolic pathways of interest; 
however it does not confirm their expression (requiring 
transcriptomics).

The assembly of DNA-based viruses was initially beset 
with unique challenges compared to other sources of 
DNA, however the isolation and sequencing of DNA-
based viruses has become considerably more developed 
and reproducible, as reviewed elsewhere [78–80]. Simi-
larly, RNA-based viruses have also been studied through 
metagenomics, with protocols now achieving a high 
degree of accuracy and recovery efficiency [81].

Indeed, some pathways may be shared among several 
genomes, suggesting potential cross-feeding between 
microbes in the community [82]. Screening genomes for 
specific genes associated with particular metabolic pro-
files can be a powerful tool in discerning (i) evolutionary 
acquisition of genes and (ii) putative biochemical trans-
formations within the ecosystem. Such information may 
help substantiate observed physicochemical shifts in the 

ecosystem. Crucially, however, metagenomic sequence 
data from reference databases cannot linearly translate 
into functional assignments for homologous sequences 
[15, 83], in contrast to metatranscriptomics which meas-
ures gene expression (84, 85).

Metatranscriptomics
The application of metatranscriptomics to analyse the 
sum of genes expressed in a same sample, is essential for 
assigning functionality to members of a microbial com-
munity. The metatranscriptomics approach explores the 
metabolically active fraction of a sample via sequencing 
RNA transcripts. Here, total RNA or messenger RNA 
(mRNA) in a sample is converted to complementary 
DNA (cDNA), allowing it to be further pre-processed as 
needed in a stable form [86, 87]. The cDNA strands are 
then sequenced, creating a map of active gene expres-
sion and regulation [88, 89]. Analogous to DNA-based 
approaches, metatranscriptomics can be PCR-mediated 
or PCR-free, furthermore, reads may be assembled de 
novo or with the help of a reference database [90–92]. 
The most challenging aspect of metatranscriptomics is 
the isolation and storage of microbial mRNA as mRNA 
must be separated from rRNA, since the latter comprises 
the majority of RNA present, as well as from eukaryotic 
mRNA [87, 93, 94]. Furthermore, the inherent instabil-
ity of mRNA reduces the amount of sample available for 
sequencing [94]. Strategies whereby RNA is stabilised 
(e.g., poly(A) tailing) limit the need for sequence knowl-
edge prior to cDNA synthesis [95–97]. While this 
improves on previous primer-based sequencing methods, 
it nonetheless presents new biases and challenges [88, 
98–100]. RNA- viruses have been characterized through 
metatranscriptomics [101, 102]. Limitations in the bioin-
formatics infrastructure for reference databases as well as 
the quality of submissions nonetheless hampers the abil-
ity to work with viral strains [93], albeit the issue is being 
addressed by organisations such as the World Society for 
Virology [103]. As the case with virtually all metagenome 
reference datasets, transcriptome reference databases 
suffer from significant coverage gaps [92]. Furthermore, 
the task of relating transcriptomic data to DNA-based 
taxonomy presents its own set of challenges [104].

Metaproteomics
Instead of focusing exclusively on protein diversity within 
a sample, metaproteomics provides a temporo-spatial 
snapshot of the proteins expressed by the metabolically 
active community [105, 106]. Metaproteomics includes 
all analyses that isolate or characterise proteins, such 
as two-dimensional gel electrophoresis, liquid chroma-
tography, mass spectrometry, as well as antibody and 
protein microarray techniques [107]. Limitations to 
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metaproteomic approaches are typically associated with 
the complexity of the sample, especially in dynamic envi-
ronments with multiple trophic levels [108, 109]. The 
current state of the field and the challenges within have 
been reviewed elsewhere [110–113].

Proteins from animals, plants, or otherwise non-target 
organisms often contribute to samples, and that further 
complicates already sensitive protein extraction methods 
[114]. Finally, researchers must contend with computa-
tional challenges in the identification and assignment of 
peptides and proteins [115–117] as well as their func-
tional annotation [118].

Metabolomics
Metabolomics seeks to identify and quantify metabolites 
(compounds ≤ 1500  Da) produced by the metabolically 
active fraction of the microbial community [105]. Gener-
ally, metabolomics is most effective when investigating 
how a known set of metabolites produced by a particu-
lar community may change under experimental condi-
tions. It is particularly effective as a tool to follow the 
response of organisms to changes in stimuli (nutrition, 
biotic and abiotic stressors) [119–121]. Since changes in 
the metabolome occur simultaneously with changes in 
the transcriptome and proteome, mapping of biochemi-
cal pathways can theoretically link metabolomics with 
both -omics results. However, there are practical chal-
lenges around handling large amounts of metabolomics 
data as well amplicon and protein data when there can 
also be insufficient reference data and difficulties in 
profiling metabolites. As such, metabolomics is typi-
cally split between metabolite profiling (labor-intensive 
but specific) and fingerprinting (rapid but only partially 
correlatable snapshot) [122]. Compared to metaprot-
eomics, metabolomics faces greater challenges owing to 
the colossal quantity of metabolites present in any sam-
ple and the large number of uncharacterised metabo-
lites [123]. Furthermore, accurately detecting molecules 
is limited by detection methods (e.g., interpreting MS 
peaks) as well as the detection of partially degraded 
metabolites—both factors contributing to false dis-
coveries [124]. A major asset in unravelling metabolic 
pathways has been the emergence of constraint-based 
analyses of metabolic networks, which are able to inte-
grate gathered data with simulated metabolic models. Of 
these, the most predominant is the flux balance analysis 
(FBA) which accompanies mechanistic simulations with 
the stoichiometric matrices for the conservation of mass 
and biologically relevant objective functions to predict 
flux distributions. These networks may then be further 
explored through metabolic pathway analysis, which cre-
ates potential pathways between sets of metabolites. A 
common thread in the analysis of biological data is the 

excess of variables, lending to a potential over-reliance on 
reference databases or established models. Developments 
such as the Metabolomics Standards Initiative support 
the creation of more reliable protocols to determine 
whether metabolites of interest are present in samples, 
while projects such as the Human Metabolome Database 
create a more specialised reference tool for human stud-
ies [125, 126].

Functional assignment
While elucidating function is a major goal of meta-omics, 
biochemical observations cannot be directly mapped 
back onto sequence data. Even though several strategies 
exist to segregate the metabolically active microbial com-
munity from the total of detectable genetic sequences 
[127, 128], a similar strategy does not yet exist to segre-
gate the total exudates predicted by the metatranscrip-
tome from those observed through metabolomic or 
metaproteomic analyses. Nonetheless, there are several 
initiatives that incorporate ontological analysis with the 
large sequence datasets generated from metagenomic 
studies, which is an area that has been well reviewed [18, 
129–131]. Ultimately, this is due to a diverse set of chal-
lenges: full or partial degradation of exudates before sam-
pling, modification of compounds (e.g. use as reducing 
equivalents), inadequate sampling resolution, etc. There 
is a plethora of physiological observations of isolated 
strains in the laboratory and putative inferences pro-
vided by metagenomic analysis, but community ecology 
aims to describe on a physicochemical level the potential 
of a microbial community to interact within its ecosys-
tem [127, 132–135]. For more information on the state 
of meta-omics for functional community analysis, the 
reader is referred to recent studies [26, 29, 30, 136–140].

Common microbial databases
The accumulation of data in large taxonomic reposito-
ries has opened up new possibilities for research into the 
organisation and assembly of microbial communities that 
were previously inaccessible due to sparse coverage. Per-
sistent incomparability of microbiome analyses has been 
addressed by consolidating studies around the same set 
of metadata standards [141, 142]. Given the rapid pro-
liferation of heterogenous data generated from different 
protocols with and without standardisation steps, several 
prominent institutions have set out to create more inter-
nally consistent generic repositories for datasets. A selec-
tion of prominent databases are summarised in Table 1, 
while a more thorough and regularly updated list can 
be found in the annual issue of Nucleic Acids Research 
devoted to databases [143].

A fundamental challenge for the collection of micro-
bial community data is the unequal incorporation and 
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Table 1  Examples of public databases for microbial community analysis. Prevalent microbial sequence databases are listed below 
with indications of their omics integration and functional assignment integration where applicable

Database name Data type Meta-omics approach 
included

Target organisms URL References

China National GeneBank 
(CNGB)

rRNA subunits
Genomes
Transcriptomes
Proteomes
Environmental/ contex-
tual data

Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Environmental measure-
ments

All microorganisms https://​db.​cngb.​org/ [185]

ConsensusPathDB rRNA subunits
Genomes
Transcriptomes
Proteomes
Environmental/ contex-
tual data

Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics

Animal (human, mouse), 
fungi (yeast)

http://​conse​nsusp​athdb.​
org/

[186, 187]

DNA DataBank of Japan 
(DDBJ)

rRNA subunits
Genomes
Transcriptomes
Proteomes
Environmental/ contex-
tual data

Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics

All microorganisms http://​www.​ddbj.​nig.​ac.​jp [188–190]

European Molecular 
Biology Laboratory—
European Bioinformat-
ics Institute (EMBL-EBI) 
European Life-Science 
Infrastructure (ELIXIR)

rRNA subunits
Genomes
Transcriptomes
Proteomes
Metabolomes
Environmental/ contex-
tual data

Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measure-
ments

All microorganisms https://​elixir-​europe.​org/ [191–197]

EzBioCloud rRNA subunits
Genomes
Environmental/ contex-
tual data

Sanger sequencing
Metabarcoding
Metagenomics
Environmental measure-
ments

Bacteria and Archaea https://​www.​ezbio​cloud.​
net

[198]

International Nucleotide 
Sequence Database Col-
laboration (INSDC)

rRNA subunits
Genomes

Sanger sequencing
Metabarcoding
Metagenomics

All microorganisms https://​www.​insdc.​org/ [199, 200]

Joint Genomic Institute 
Integrated Microbial 
Genomes (JGI- IMG)

rRNA subunits
Genomes
Transcriptomes
Proteomes

Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics

All microorganisms https://​img.​jgi.​doe.​gov/​
index.​html

[201]

Metagenomic Rapid 
Annotations using 
Subsystems Technology 
(MG-RAST)

rRNA subunits
Genomes
Transcriptomes

Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics

All microorganisms https://​www.​mg-​rast.​org/ [202, 203]

National Center for Bio-
technology Information 
collections (NCBI RefSeq, 
NCBI BLAST, NCBI Entrez, 
NCBI GenBank)

rRNA subunits
Genomes
Transcriptomes
Proteomes
Metabolomes
Environmental/ contex-
tual data

Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measure-
ments

All microorganisms https://​www.​ncbi.​nlm.​
nih.​gov/​refseq/
https://​www.​ncbi.​nlm.​
nih.​gov/​refseq/
https://​www.​ncbi.​nlm.​
nih.​gov/​search/
https://​www.​ncbi.​nlm.​
nih.​gov/​genba​nk/

[204–207]

Protist ribosomal refer-
ence database (PR2)

rRNA subunits Sanger sequencing
Metabarcoding

All eukaryotes https://​pr2-​datab​ase.​org/ [208]

SILVA rRNA subunits Sanger sequencing
Metabarcoding

All microorganisms https://​www.​arb-​silva.​de/ [209]

University of California, 
Santa Cruz Genome 
Browser

rRNA subunits
Genomes
Transcriptomes

Sanger sequencing
Metabarcoding
Metagenomics

All microorganisms https://​genome.​ucsc.​
edu/

[210]

https://db.cngb.org/
http://consensuspathdb.org/
http://consensuspathdb.org/
http://www.ddbj.nig.ac.jp
https://elixir-europe.org/
https://www.ezbiocloud.net
https://www.ezbiocloud.net
https://www.insdc.org/
https://img.jgi.doe.gov/index.html
https://img.jgi.doe.gov/index.html
https://www.mg-rast.org/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/search/
https://www.ncbi.nlm.nih.gov/search/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://pr2-database.org/
https://www.arb-silva.de/
https://genome.ucsc.edu/
https://genome.ucsc.edu/
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treatment of experimental parameters across studies. 
Biases in data collection, processing, and interpreta-
tion are not necessarily controllable or due to human 
error. Environmental and technological constraints, as 
well as the inherent need to choose different sampling 
techniques, hamper reproducibility across studies. The 
inception of “microbiome centers” as a knowledge shar-
ing network that seeks to promote cross-disciplinary 
integration and to streamline the collection and analyses 
of microbial community data is an emergent strategy to 
respond to this challenge [32].

The microbial database collections described in Table 1 
share a fundamental characteristic; they specialise in spe-
cific data types and targeted taxa rather than ecosystems. 
By contrast, ecosystem-specific databases adapt method-
ologies and analyses to the unique characteristics of the 
ecosystem under study. Nonetheless, ecosystem-specific 
databases are still an emerging tool for a better under-
standing microbial community dynamics. The following 
sections cover the motivations leading to their emer-
gence, as well as an analysis of their benefits and limita-
tions in describing microbial community ecology. 

Ecosystem‑specific databases as a platform 
for standardisation of methodological practices
A decoupled approach, whereby each -omics study pre-
sents a subset of the entire picture, addresses some of the 
inherent practical limitations (cost, expertise, infrastruc-
ture requirements) behind multi-omics studies. Common 
sets of standards are essential for integrating temporally 
and spatially distinct studies of the same ecosystem into 
a coherent view of the whole, and in this respect, ecosys-
tem-specific databases provide a useful template [144]. 
In turn, this likely contributes to the generation of higher 
quality results in terms of accuracy, precision, and repro-
ducibility. Common standards across studies facilitate the 

integration of meta-omics tools into community analysis, 
as well as the ability for multiple studies to be included as 
additional temporal and spatial snapshots of a sampling 
region. Furthermore, ES-DB’s are always curated by a 
research group or consortium with experts of the given 
ecosystem and/or targeted taxa. While the inclusion of 
metadata greatly improves the quality of microbial data-
bases [14, 145–148], reliably identifying errors (misla-
beled data, misspelled labels [149]) within large data sets 
remains a challenge [150–152].

An inherent advantage of ES-DB’s is improving inter-
connectivity of studies around the same ecosystem. Mul-
tiple studies describe the usefulness of manual curation to 
complement automated assignment tools [153–156]. As 
a case study for the statistical power of combining stud-
ies into aggregate databases through standardised meth-
odologies, the Earth Microbiome Project Consortium 
(EMP) collected and analysed data from 97 microbiome 
studies, 59 of which were published in peer-reviewed 
journals [157]. Owing to standardised protocols, pooled 
data from the EMP has been used in meta-analyses to 
contextualise global patterns derived from individual 
studies [158]. Within the EMP consortium, individual 
studies are able to tailor collection and analysis practices 
to their unique environment under study while adhering 
to a set of core standards. As such, it represents an exam-
ple of how both standardization and customization may 
be weaved together.

Curated databases have allowed for development of 
sampling protocols tailored to the microbial communi-
ties under study. One such example is the Actinobacteria 
genus, Tetrasphaera, that was routinely underestimated 
in wastewater treatment systems until microbial screen-
ing protocols incorporated adaptations to the cell lysis 
procedure during DNA extraction [159]. These proce-
dural adaptations, concomitant with a push for greater 

Table 1  (continued)

Database name Data type Meta-omics approach 
included

Target organisms URL References

Ribosomal RNA operon 
copy number database 
(rrnDB)

rRNA subunits Sanger sequencing
Metabarcoding

Bacteria and Archaea https://​rrndb.​umms.​med.​
umich.​edu/

[211]

The Microbe Directory 
(TMD)

rRNA subunits
Genomes
Environmental/ contex-
tual data

Sanger sequencing
Metabarcoding
Metagenomics
Environmental measure-
ments

Microbial prokaryotes 
and eukaryotes

https://​coda.​io/@​themi​
crobe​direc​tory/​home

[212]

Vienna Metabolomics 
Center (VIME)

rRNA subunits
Genomes
Transcriptomes
Proteomes
Metabolomes

Sanger sequencing
Metabarcoding
Metatranscriptomics
Metaproteomics
Metabolomics

All microorganisms https://​vienna-​metab​
olomi​cs-​center.​at/

[213]

https://rrndb.umms.med.umich.edu/
https://rrndb.umms.med.umich.edu/
https://coda.io/@themicrobedirectory/home
https://coda.io/@themicrobedirectory/home
https://vienna-metabolomics-center.at/
https://vienna-metabolomics-center.at/
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reproducibility across microbial community studies 
investigating wastewater treatment, have contributed to 
the formation of the Microbial Database for Activated 
Sludge (MIDAS 3). MIDAS has since become a detailed 
ecosystem-specific database for wastewater treatment 
systems with resolution at the species level [160, 161]. 
Since then, the MIDAS team has also included a field 
guide for researchers interested in submitting their own 
data [162].

A critical aspect of database management is the devel-
opment of internal quality standards. What has been 
described as the reproducibility crisis, a phenomenon 
whereby microbiome studies often produce poorly com-
parable datasets and interpretations, may be addressed 
through the standardisation of methodologies and inter-
connectivity among researchers [53, 163–165]. Each 
step in the analysis of microbiomes will influence the 
resulting OTU table from sample storage, DNA extrac-
tion, sequencing (including as applicable: amplification, 
primer choice), sequencing platform, to the choice in 
bioinformatics pipeline used. As such, while standardi-
sation does not remove biases involved in the process, 
it may reduce variability across studies in the same field. 
A recent review on the critical knowledge gap around 
sampling and handling in microbiome studies identi-
fied 95% of studies as having used subjective sampling 
methods or inadequately describing a methodology 
[76]. Schloss (2018) recently outlined how microbiome 
studies can improve their integrity and reproducibility 
through an evaluative rubric [163]. Data transparency 
has likewise been shown to improve community cross-
validation [16, 166, 167]. The standardisation of bioin-
formatics processes has been facilitated by independent, 
community-led initiatives such as the Critical Assess-
ment of Metagenome Interpretation (CAMI), a compre-
hensive comparison of methodologies for microbiome 
analysis [168]. Other sources provide more general guide-
lines and educational tools such as the Statistical Diver-
sity Lab (http://​stati​stica​ldive​rsity​lab.​com/) [169], as well 
as resources that summarise best practices in sample 
preparation for microbiome analyses [14, 170]. In con-
trast to the above protocols that present ways in which 
standardisation can be done, ES-DBs establish standards 
in the context of their specific biome. Table 2 summarises 
current ES-DB’s in operation and their capabilities.

A roadmap for ecosystem‑specific databases
Environment-specific databases typically originate 
around persistent knowledge gaps and are often asso-
ciated with challenges in the selection of appropriate 
sampling techniques. This is the case of the proposed 
Drinking Water Microbiome Project (DWMP) outlin-
ing a knowledge gap from a literature comparison that 

indicated a lack of knowledge within the drinking water 
microbiome literature compared to other wastewater 
treatment microbiomes [171]. They propose that a com-
mon database allowing diverse data types to be pooled 
under standardised conditions can address the challenge 
of characterizing microbiome dynamics for drinking 
water systems. A recent perspective article by de Vrieze 
(2020) discussed the creation of a more applied database 
than currently available within the MIDAS infrastruc-
ture to address the challenges in studying the anaerobic 
digester microbiome [172, 173]. Here, a strategy of iden-
tifying and fingerprinting microbial communities within 
the anaerobic digestion microbiome is proposed as a tool 
to complement monitored physicochemical parameters. 
As measurements reveal shifts in the concentration of 
specific metabolites, this may be related to shifts in the 
community composition at large.

In all cases, the integration of functional databases with 
taxonomic collections requires both top-down and bot-
tom-up engagement as proposed for the DWMP [171]. 
A recent meta-analysis of DNA barcoding databases that 
cover European aquatic habitats highlighted issues in 
quality control and assurance when integrating diverse 
databases; results pointed to an inconsistent image of 
taxonomic and subsequently phylogenetic diversity [174]. 
Despite this, interest in greater biome contextualisa-
tion as well as cross-biome studies appears to be grow-
ing. A consortium of researchers studying water quality 
in natural and anthropogenic environments, the Alliance 
for Freshwater Life, demonstrates how properly curated 
and inclusive databases may communicate with a larger 
audience and develop policy and educational platforms 
beyond their fundamental scientific contribution [175]. 
Importantly, ecosystem-specific datasets are not limited 
to environmental studies. In their 2018 article, Kapono 
et al. recreated the “human environment” as a combina-
tion of microbial and chemical data for use in forensics 
studies [176]. Nor has the applicability of identifying 
microbiome-associated biomarkers or keystone species 
been ignored in health and medicine [170, 177, 178]. 
Similarly, the search for novel genes via bioprospecting 
depends strongly on accurate genetic annotation and 
thus may also benefit from more robust reference data-
bases [179, 180].

Limitations of ES‑DB’s for meta‑omics integration
ES-DB’s appear to be well conceived to address some 
of the contemporary challenges associated with large 
microbial community datasets: standardisation of sam-
ple methods, processing and analysis, data reproducibil-
ity, and the integration of meta-omics technologies from 
independent studies on the same ecosystem, as reviewed 
previously [53, 165]. In essence, the goal of ES-DB’s is 

http://statisticaldiversitylab.com/
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Table 2  A selection of published ecosystem-specific databases

Ecosystem-specific database Target ecosystem(s) Target organisms Meta-omics approach used References

Biomes of Australian Soil Environments 
(BASE)

Australian subcontinent, terrestrial 
systems

Prokaryotes and 
fungal-specific 
eukaryotes

Sanger sequencing
Metabarcoding
Metagenomics
Environmental measurements

[214]

Dictyopteran gut microbiota reference 
Database (DictDb)

Dictyopteran gut microbiota All microorganisms Sanger sequencing
Metabarcoding
Metagenomics

[215]

Earth Microbiome Project (EMP) EMP Ontology (EMPO) ecosystems All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measurements

[34, 216]

Genome Repository of Oiled Systems 
(GROS)

Crude oil contaminated environments All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Environmental measurements

[217]

Global Ocean Sampling (GOS) Open ocean ecosystems All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measurements

[218]

Human Food Project Human gastrointestinal tract All prokaryotes Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measurements

[219]

Integrative Human Microbiome Project 
(HMP)

Human body microbiome environ-
ments

All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measurements

[181–183]

Human Oral Microbiome Database 
(HOMD)

Human oral environment All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics

[220]

Maarja Öpik arbuscular mycorrhiza 
database (MaarjAM)

Arbuscular mycorrhizal fungi associ-
ated environments

All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Environmental measurements

[221]

Marine databases; MarRef, MarDB, 
MarCat

Open ocean ecosystems All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measurements

[184]

METAgenomics of the Human Intesti-
nal Tract (MetaHIT)

Human gastrointestinal tract All microorganisms Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics

[222]



Page 10 of 17Lobanov et al. Environmental Microbiome           (2022) 17:37 

to ensure that anthropogenic biases (sampling strate-
gies, analysis protocols) are kept to a minimum so that 
(i) temporal and spatial variability may be better studied 
across independent studies of the same ecosystem and 
(ii) independent research groups specializing in different 
meta-omics analytical strategies are all able to contribute 
towards a common knowledge pool.

Pinning down an explicit definition for ecosystem-spe-
cific databases in contrast to multi-omics databases can 
become blurred, since it depends on how the ecosystem 
in question is defined. While in some cases the ecosys-
tem under study is physically constrained (e.g., human 
body microbiome [181–183]), in other cases it describes 
a global system (e.g., the open ocean [184]). Biomes do 
not have strict boundaries, so ES-DB’s may suffer from 
arbitrary exclusions of relevant data from neighboring 
biomes. Adding or subtracting biomes into the scope of 
a particular ES-DB will necessarily lead to blurring defi-
nitional boundaries and a form of the Sorites paradox, 
which pursued to its logical conclusion can eventually 
broaden an ES-DB into a generalised microbial collec-
tion. A grey area emerges when it comes to describing 
the boundary between databases examining multiple 
biomes within a common specialised environment and 
databases examining them within a global holistic con-
text. Generic databases thus remain an effective catch-all 
option for any data type.

Another crucial limitation to ES-DB’s relates to their 
administration. In order to have professional curation 
of the dataset, there must be a group of specialists in the 
field willing and able to provide the service. One way in 
which the initial entry costs could be lowered would be 
to establish a standardised template (meta-structure), 

applicable to any microbial database collection, for data 
that is to be uploaded or pooled from existing datasets. 
This strategy could accommodate any dataset size that 
is collected by a single research group up to an inter-
national consortium, with curation rights regulated by 
each database founder. Not only would this allow bet-
ter integration between ES-DB’s, but it could decrease 
the barriers to entry by removing the need for extensive 
bioinformatics expertise. It would provide a template for 
decision-making by researchers to follow with respect 
to sample processing and data organisation. Alongside 
the emergence of ES-DB’s, several “utilitarian databases” 
have been proposed that orient themselves around func-
tional analyses, ecosystem services, and/or the organi-
sation of metadata (Table 3). As the scope and depth of 
these auxiliary tools expands, they will further comple-
ment the development of databases and analytical tools 
catering to unique ecosystems.

Conclusion
The establishment of generic repositories for genetic 
data marked a milestone for the systematisation of global 
microbial diversity cataloguing. Having greatly expanded 
data accessibility, data type specific sequence and omics 
repositories facilitate novel analyses of data collected 
from previous studies. However, different standards and 
practices around data collection and processing reduce 
data robustness and limit the ability for researchers to 
compare studies [53, 165]. Although no generalizable 
model for standardisation can be applied across all eco-
systems, standards applied to a restricted ecosystem 
can be useful. Here we have reviewed how various fac-
tors contribute to the emergence of ecosystem-specific 

Table 2  (continued)

Ecosystem-specific database Target ecosystem(s) Target organisms Meta-omics approach used References

Microbial Database for Activated 
Sludge (MiDAS)

Activated sludge All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metabolomics
Environmental measurements

[223]

Rumen and Intestinal Methanogen- DB 
(RIM-DB)

Ruminant gastrointestinal tract All microorganisms Sanger sequencing
Metabarcoding
Metagenomics

[224]

Tara Oceans project Open ocean ecosystems All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metatranscriptomics
Metaproteomics
Metabolomics
Environmental measurements

[35, 225, 226]

Unified Human Gastrointestinal 
Genome (UHGG) collection

Human gut All microorganisms Sanger sequencing
Metabarcoding
Metagenomics
Metaproteomics

[227]
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databases and what important repercussions for data 
quality and reproducibility can emerge from well-consid-
ered strategies that integrate multiple data types.

Nonetheless, more widespread implementation of ES-
DB’s requires more inclusive and accessible bioinformatic 
infrastructure. While algorithms and methodologies 
designed to sort and organise existing data are becom-
ing more widespread, only a few resources are available 
to facilitate spontaneous creation of new ES-DB’s. Con-
crete standards for data annotation and organisation that 
permit better synthesis of omics data are necessary to 
facilitate this development. By consolidating standards 
for best practices and professionally curating data, higher 
quality and reproducible datasets will become more com-
monplace and accessible in the future.

A final point along these lines is that a good database 
requires good datasets. Standard methods are a repre-
sentation of best-practices in a world of practical and 
economic limitations. As technology improves, data-
base curators must decide when and how to update the 
standard methodology, taking into consideration that 
each shift damages the reproducibility of the database as 
a whole. As an ongoing example, significant reductions 
in the cost of full-length 16S rRNA gene sequencing are 
making longer reads increasing competitive strategy vs. 
shorter amplicons—the current recommended sequenc-
ing strategy for databases such as the EMP. Currently, the 
Illumina platform (specializing is short reads) delivers 

a higher sequencing quality than Pacific Bioscience and 
Nanopore (long reads)—a crucial decision factor which 
will also need to be resolved. The entry barrier for new 
data will need to be set individually across ES-DBs to bal-
ance expanding the breadth of incoming datasets against 
constricting data to only high-quality entries. Nonethe-
less, curation will only continue to rise in importance as 
database collections increase in both size and scope.

Abbreviations
CAMI: Critical Assessment of Metagenome Interpretation; DWMP: Drinking 
Water Microbiome Project; EMP: Earth Microbiome Project; ES-DB: Ecosystem 
specific database; MCC: Microbiome Centers Consortium; MIDAS: Microbial 
Database for Activated Sludge.

Glossary
Biome	� Total biotic diversity within a habitat
Community 
ecology	� Identification of taxonomic and phylogenetic relationships 

between organisms in a community including how they react to 
their non-living surroundings.

Database	� A collection of data arranged around specific characteristics 
making it easier for retrieval. Sequence databases contain digital-
ized representation of biological informational units (e.g., nucleic 
acids, proteins) however databases may include representations 
or descriptions for other types of biological data

Ecosystem	� A biological community of interacting organisms and their phys-
ical environment

Functional 
analysis	� Relating expressed genes or metabolites produced to taxonomic 

identity utilizing meta-omics data
Genomics	� A field of study involving all aspects of genomes from their struc-

ture, evolution, as well as readability (mapping) and functionality

Table 3  A non-exhaustive list of organisational databases pooling data from other sources as an analytical tool

Functional database Purpose Description References

Functional Ontology Assignments for Metagen-
omes (FOAM)

Functional analysis Groups environmental metagenomic sequences 
based on gene functionality instead of taxonomy

[228]

EXPath Functional analysis Groups microarray expression profiles used to infer 
metabolic pathways for six model plants

[229]

Ecopath with Ecosim (EWE) (now grouped under 
EcoBase)

Functional analysis Information repository of EwE models (modeling 
software for ecological phenomena)

[230]

Gulf of Mexico Ecosystem Services Valuation Data-
base (GecoServ) (now called BlueValue)

Ecosystem service evaluation Worldwide depository of ecosystem valuation data [231]

Open access database on climate change effects on 
littoral and oceanic ecosystems (OCLE)

Ecosystem service evaluation Ecological-driven database of present and future 
hazards for European marine life

[232]

Biofuel Ecophysiological Traits and Yields Database 
(BETYdb)

Functional analysis Open-access repository to facilitate the organisa-
tion, discovery, and exchange of information about 
plant traits, crop yields, and ecosystem functions

[233]

jae-f-database Functional analysis Global database and ‘state of the field’ review of 
research into ecosystem engineering by land 
animals

[234]

Genomes OnLine Database (GOLD) Metadatabase Collection of genome projects and associated 
metadata

[235]

Omics Discovery Index (OmicsDI) Metadatabase Groups datasets across multiple public meta-omics 
data resources

[236]

Omics database generator (ODG) Metadatabase Groups genomics data, integrates with experimen-
tal data to create a comparative, multi-dimensional 
graphical database

[237]
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Habitat	� Physical (abiotic) and biotic resources present in a particular area
Keystone 
taxon	� A taxon having a disproportionate influence on community 

structure, where the influence is due to strong biotic interactions 
rather than high abundance

Meta-	� A prefix indicating that the following term applies to a commu-
nity sample (see metagenomics vis à vis genomics). The term 
“metabolomics” has a different root and does not follow this 
pattern

Metabar
coding	� Method allowing for the identification of all the species in the 

community by targeting a specific gene or gene region
Metadata	� All data describing the characteristics of the entry, how it is 

stored and defined
Metadata
base	� A compilation of databases based on their metadata. This cen-

tralises screening, comparing, and filtering databases making 
the data more accessible

Metageno
mics	� Method targeting the amplification of all genes directly from an 

environmental sample
Meta-omics	� An umbrella term encompassing genomics, transcriptom-

ics, proteomics, and metabolomics. Sometimes referred to as 
multi-omics

Metaproteo
mics	� A term encompassing all experimental approaches related to 

the study all proteins in microbial communities, generally their 
identification and quantification in complex samples

Metastruc
ture	� The underlying structure used to organise metadata
Metatranscri
ptomics	� Method allowing for the identification of all expressed genes in 

an environmental sample
Microbiome	� Refers to the total conceptual collection of microorganisms and 

their genomes within a specific environment
Microbiota	� Refers to the total physical collection of microorganisms within a 

specific environment
-Omics	� A suffix referring to a range of biological disciplines, often 

grouped together as a tool-kit for biological analyses of micro-
bial communities: genomics, proteomics, metabolomics, 
metagenomics, phenomics and transcriptomics

Proteomics	� The isolation and study of proteins from a single organism
Targeted met
agenomics	� Subset of metagenomics whereby subsequent sequencing anal-

ysis constricts the study focus, i.e., to a specific gene cluster or 
particular group of organisms

Transcripto
mics	� Analysis of gene expression (entire genome, single gene, or 

gene cluster) within a single organism
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